简单 CNN 模型
大约 1 分钟
通过连续使用卷积和池化层的组合提取图像特征
定义常量
# 训练集路径
CIFAR_PATH = "./cifar100/cifar-100-python.tar.gz"
# 使用 ImageNet 训练集的平均值和标准差
mean = [0.5070751592371323, 0.48654887331495095, 0.4409178433670343]
std = [0.2673342858792401, 0.2564384629170883, 0.27615047132568404]
卷积层
核心思想
局部感受野:由于图像的空间联系是局部的,每个神经元不需要对全部的图像做感受,只需要感受局部特征即可,然后在更高层将这些感受得到的不同的局部神经元综合起来就可以得到全局的信息了,这样可以减少连接的数目。
权值共享:不同神经元之间的参数共享可以减少需要求解的参数,使用多种滤波器去卷积图像就会得到多种特征映射。权值共享其实就是对图像用同样的卷积核进行卷积操作,也就意味着第一个隐藏层的所有神经元所能检测到处于图像不同位置的完全相同的特征。其主要的能力就能检测到不同位置的同一类型特征,也就是卷积网络能很好的适应图像的小范围的平移性,即有较好的平移不变性(比如将输入图像的猫的位置移动之后,同样能够检测到猫的图像)